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g2 
p22 + 2p1p2 

g3 = p32 + 2p1p3 + 2p2p3 . 

For this case the unique maximum likelihood 
estimates for (p1,p2,p3) can be written dawn 
directly as 

Several statistics are commonly used to judge 
the goodness -of -fit for counted data models. 
In this paper, two of these statistics will be 
compared with respect to their samll sample 
properties under the null hypothesis. The 
usual chi -square statistic (Pearson statistic) 
is defined by 

2 (Observed - Expected)2 
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Expected 
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A suggested alternative statistic that has some 
asymptotically optimal properties 

is the likelihood -ratio statistic 

2 E Observed log (Observed) 

all cells 
e Expected 

Many statisticians prefer the use of one or the 
other of these statistics, although among 
everyday users the Pearson statistic is far 
more popular. Also, some statisticians 
follow the practice of reporting both statistics 
(see for example, Goodman [1973]), but little 
guidance is available concerning the occurrence 
of large discrepancies between the two 
statistics. 

THE MODEL 

Comparisons between the statistics are 
made for a particular parametric model that 
arises naturally in a group helping situation. 
Individuals or groups are given the opportunity 
to help another individual in distress. The 
degree of help is graded I, II, or III: I for 

not helping, III for actively helping, and II 
for an intermediate action. Further details 
can be found in Fienberg and Larntz [1971] or 

Staub [1970]. Similar models are also used in 
component, testing problems (see Easterling and 
Prairie [1971]). 

Data were gathered for individuals and 
groups of size two. Let p , p22, and p33 be the 
probabilities of observing individual with 
help graded I, II, and III, respectively. Then 
if the individuals in a group act independently 
and if only the higher grade of help is scored, 

p12, p22 + 2p1p2, and p32 + 2p1p3 + 2p2p3 are 

the respective probabilities of observing I, II, 

and III for groups of size two. 
Suppose N1 individuals and N2 groups are 

tested. Under the above assumptions, 
(n 1,n2 ,n ) follows a multinomial 
distributi ñ with probability vector 
(pl,p2,p ), and (n12,n22,n32) follows a 
mulitinom al distribution wh probability 
vector (g1,g2,g3) where 

2 

= gl P1 

336 

= 
(-n31 

+ /n312 + 4ac )/2a 
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p3 = 1 - (14r)pl 

where 

n21 2n11 - 4n12 + 

r 2(n11 
+ 2n12) 

(3) 

(4) 

s = (2nn+ 4n12- 
2+8(na+nZ2)(nn+2n12) 

(5) 

a = (1 + r)[(nll + 2n12)(1 + r) 

+ (n31 + 2n32) + 2n22(1 + r)/(2 + r)] , (6) 

and 

= n11 + 2n12 + 2n22/(2 + r) 

The selection of this model for making 
comparisons between the likelihood -ratio and 
Pearson chi -squares provides several advantages: 
(a) The model depends on two parameters, pl 

and p,, and thus the goodness -of -fit test 
for null hypothesis involves the 
estimation of these parameters. Comparisons 
are therefore made for a composite null 
hypothesis. 

(b) Since the maximum likelihood estimates can 
be written down in closed form, iteration 
is not necessary for finding the estimates. 
This is important when considering the 

feasibility of doing large amounts of 
computation. 

(c) Examining (3), note that the probability 
of Help Grad I for groups is p When pl 
is small, p is quite small. thus the 
selection of this model allows for 
comparisons of very skew multinomials, 
which means comparisons can be made for 
small as well as moderate minimum cell 
expectations. Previous studies (Cochran 
[1952], Yarnold [1970]) have indicated that, 
for small expected values, the Pearson 
statistic does not follow the chi -square 
distribution well, while some suggestion 
has been indicated (cf. Bliss [1967]) that 
the likelihood -ratio statistic would be 



better in such sitia tions. 

SMALL SAMPLE PROPOERTIES UNDER THE NULL 
HYPOTHESIS 

Under the null hypothesis the goodness -of- 
fit statistics, X and G', have asymptotic 
chi -square distributions with 2 degrees of 
freedom. However, for small samples the 
chi -square approximation in many cases does not 
agree well with the actual distribution. 
Several studies (Cochran [195], Fisher [1958], 

Roscoe and Byars [1971], Yarnold [1970]) have 
given conflicting points of view as to at what 
point the approximation is "reasonable" for the 
Pearson chi - square statistic. Standard rules 
specify that the minimum cell expectation 
should be 5, with possibly a few smaller. The 
emphasis here will not be on finding such a 
rule, but in comparing the likelihood -ratio 
and Pearson statistics with regard to the 
approximation. In other words, we ask for 
small samples, which of the two statistics is 

better approximated by the asymptotic 
chi -square distribution? 

The initial task in this study of the small 
sample properties is to determin2 the 
distribution of the statistics G and X when 
the null hypothesis holds. Several methods are 
available to handle such a problem. The 
principal'method used here was that of 
enumeration. The number of possible outcomes 
of two trinomials with sample sizes NI and NG 
is given by 

NI :+ 2 NG + 2 
Outcomes = 

2 2 

(8) 

For NI N = 8, the number òf possible 
outcomes 2025. Thus, for a given value of2 

(pl,p2,p3), 
NI, and NG, the distribution of G- 

and X2 were determined by computer. 
One question that arises in the use of this 

method is how to deal with zero cell coúnts 
and zero expected values. The maximum 
likelihood estimates were extended by 
continuity to provided well- defined procedures. 
In the same manner, when a cell had zero 
expected value, it contributed zero to the 
chi - square statistic. 

2Figute A gives a contour plot of the mean 
of G for NI = N 8. Barycentric coordinates 
were chosen to represent the 3 probabilities. 
Each corner of the triangle represents one of 
the probability vectors (1, 0, 0), (0, 1, 0), 
and (0, 0, 1), while a general point in the 
triangle corresponds to the probability vector 

Figure B gives a similar plot for 

X . The asymptotic mean for both 2tatistics 
is, of course, 2.0. The mean of G overshoots 
that value for a large set of (p1,p2,p3). The 
peak value is approximately 2.51. In viewing 
Figure B, it can be seen that the mean of the 
Pearson statistic is a smooth2r function of 
(p ,p than the mean of G 2For a large 
set (P1,p2,p3), the mean of X is close to 

2.0. The peak value is approximately 2.12. 
Thus, considering the mean only, the Pearson 
statistic appears better. 

Another method of comparison is to check 
the agreement of the actual small sample per- 
centage points with the corresponding asymptotic 
values. Results analogous to the case of the 
mean hold here. Namely, the likelihood -ratio 
tends to overshoot the corresponding large 
sample value while the Pearson statistic ténds 
to be closer to the asymptotic value for a 
large range of 

(p1,p2,p3). 
Several questions concerning the 

likelihood -ratio statistic arise from these 
results. First, is it still possible that the 
optimality properties of the likelihood -ratio 
statistic carry over in spite of the poor 
characteristics of its null distribution? This 
will be the subject of another paper comparing 
the powers of the statistics. Second, can the 
statistics be easily adjusted to remove some 
of its poor behavior? And third, exactly how 
does the likelihood -ratio behave as the "small" 
sample size increases? An attempt at answering 
the last question will be given below. 

The question of adjusting the likelihood - 
ratio statistic poses large difficulties. A 
simple- minded correction for the mean yielded 
mixed results, partly due to a problem of 
overcorrection with respect to size. Other 
corrections involving more moments or quantiles 
may be possible, but practical use would 
require a simple multiplicative or additive 
correction, such as those given in Bartlett 
[19 47] and Box [1949]. 

PROPERTIES OF THE LIKELIHOOD_RATIO CHI -SQUARE 
STATISTIC 

The asymptotic distribution of G2 for the 
model considered here is that of a chi -square 
variate with 2 degrees of freedom. Figure C 
gives a graph of the mean values of for 
(.6, .2, .2). Figure C is indicative of what 
happens to the mean as the sample size changes. 
It begins below its asymptotic value, rises 
to a peak, and descends to the correct value. 
The true sizes follow a similar pattern. 
Because of the discreteness of the distribution, 
the rise and descent may be slightly rocky, 
but the general pattern remains the same. 

The sample size at which the peak is 
reached varies considerably depending on the 
probability vector (p11, p , p3). Some evidence 
has been given that tfie minimum cell expectation 
governs the closeness of the small sample 
distribution to asymptotic theory for several 
chi -square problems (see for example, Cochran 
[1952], Cramer [1946], Odoroff [1970], Yarnold 
[1970]). In the problem at hand, small expected 
values are found for small values of p (since 
the first cell for pairs has probability pi!) 
and for very small values of p2 and po. 
Evidence from this study indicates that the 
larger minimum cell expectation cases are 
closer to the behavior predicted by the 
asymptotic theory. 



POWER CHARACTERISTICS 

In order to compare the power functions of 
the test statistics, it was necessary to adjust 
for the level of significance differences 
between X and G 

2 
. Let the adjusted level be 

defined as 

Adj. level (z) = sup P(statistic > z) (9) 

(Pl,P2,P3) 

Thus for a given alternative (p1, 
p2, p3; 

g1, 
g,, g3), the power of X or G can be 

computed as a function of the adjusted level. 
Many methods can be used to compare the 

power functions of the statistics. One 
interesting comparison can be made by means of 
the median significance level (Joiner [1969]. 

For a particular alternative, let 

M.S.L. = Adjusted Level (zM) (10) 

where z the median of the statistic under 
the alternative distribution. In comparing two 
statistics, the one with the lower median 
significance level would be considered better. 
For this and several other methods of 
comparison, it was found that the Pearson 
statistic was more powerful than the likelihood - 
ratio for most alternatives. 

The stochastic limit ratio (defined below) 
gives a method of determining the alternatives 
where the likelihood -ratio was more powerful 
than the Pearson. For an alternative 

p = (p1, p,, p3; , g2, g3), let G be 
value the likelihood -ratio chi -square 

calculated using 
p1, n12 p2, n13 p3, 

n21 g1, n22 = g2, 
and n23 g3. Similarly, 

let X2(p ) be defined. Then for an alternative 
define tfle stochastic limit ratio as 

G2(pa) 
S.L.R.(pa) 2 

When S.L.R. is large (71.05), the likelihood - 
ratio statistic appears more powerful based on 
small samples; whereas, with S.L.R. > 1, the 
Pearson statistic is better. The 
differentiation in the middle range (1 - 1.05) 

is not clear with some cases going to 
likelihhod -ratio and some to Pearson. However, 
for large areas of the alternative parameter 
space, S.L.R. < 1. 

CONCLUSIONS 

For one special model with a composite 
null hypothesis, the samll sample distributions 
of two chi -square statistics were examined. 
Using as criterion the closeness of small 
sample dsitribution to the asymptotic chi -square 
approximation, the Pearson chi -square statistic 
is by far the more desirable. The likelihood - 
ratio statistic has an expected value in 
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excess of the nominal and yields far too many 
rejections under the null distribution. 

It was also noted that the expected value 
and level of significance for the likelihood - 
ratio statistic displayed a consistent 
regularity in which the mean and level rose 
to a peak and then declined toward the 
asymptotic value as the sample size increased. 

Power comparisons also indicated the 
desirability of using the Pearson statistic 
over the likelihood -ratio -- at least when 
proper adjustments are made for the differing 
levels of significance. 
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